Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(11): 9854-9860, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969403

RESUMO

In Raman analysis, the substrate material serves very often for signal enhancement, especially when metallic surfaces are involved; however, in other cases, the substrate has an opposite effect as it is the source of a parasitic signal preventing the observation of the sample material of interest. This is particularly true with the advent of microfluidic devices involving either silicon or polymer surfaces. On the other hand, in a vast majority of Raman experiments, the analysis is made on a horizontal support holding the sample of interest. In our paper, we report that a simple tilting of the supporting substrate, in this case, silicon, can drastically decrease and eventually inhibit the Raman signal of the substrate material, leading to an easier observation of the target analyte of the sample, in this case, microplastic particles. This effect is very pronounced especially when looking for tiny particles. Explanation of this trend is provided thanks to a supporting experiment and further numerical simulations that suggest that the lensing effect of the particles plays an important role. These findings may be useful for Raman analysis of other microscale particles having curved shapes, including biological cells.

2.
iScience ; 24(7): 102814, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355147

RESUMO

Dew water, mostly ignored until now, can provide clean freshwater resources, just by extracting the atmospheric vapor available in surrounding air. Inspired by silicon-based solar panels, the vapor can be harvested by a concept of water condensing panels. Efficient water harvesting requires not only a considerable yield but also a timely water removal from the surface since the very beginning of condensation to avoid the huge evaporation losses. This translates into strict surface properties, which are difficult to simultaneously realize. Herein, we study various functionalized silicon surfaces, including the so-called Black Silicon, which supports two droplet motion modes-out-of-plane jumping and in-plane sweeping, due to its unique surface morphology, synergistically leading to a pioneering combination of above two required characteristics. According to silicon material's scalability, the proposed silicon-based water panels would benefit from existing infrastructures toward dual functions of energy harvesting in daytime and water harvesting in nighttime.

3.
Sci Rep ; 11(1): 10533, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006979

RESUMO

Microplastics contaminating drinking water is a growing issue that has been the focus of a few recent studies, where a major bottleneck is the time-consuming analysis. In this work, a micro-optofluidic platform is proposed for fast quantification of microplastic particles, the identification of their chemical nature and size, especially in the 1-100 µm size range. Micro-reservoirs ahead of micro-filters are designed to accumulate all trapped solid particles in an ultra-compact area, which enables fast imaging and optical spectroscopy to determine the plastic nature and type. Furthermore, passive size sorting is implemented for splitting the particles according to their size range in different reservoirs. Besides, flow cytometry is used as a reference method for retrieving the size distribution of samples, where chemical nature information is lost. The proof of concept of the micro-optofluidic platform is validated using model samples where standard plastic particles of different size and chemical nature are mixed.

4.
Nat Commun ; 11(1): 3221, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591516

RESUMO

Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.

5.
Micromachines (Basel) ; 11(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354147

RESUMO

Semiconductor and micro-electromechanical system (MEMS) technologies have been already proved as strong solutions for producing miniaturized optical spectrometers, light sources and photodetectors. However, the implementation of optical absorption spectroscopy for in-situ gas analysis requires further integration of a gas cell using the same technologies towards full integration of a complete gas analysis system-on-chip. Here, we propose design guidelines and experimental validation of a gas cell fabricated using MEMS technology. The architecture is based on a circular multi-pass gas cell in a miniaturized form. Simulation results based on the proposed modeling scheme helps in determining the optimum dimensions of the gas cell, given the constraints of micro-fabrication. The carbon dioxide spectral signature is successfully measured using the proposed integrated multi-pass gas cell coupled with a MEMS-based spectrometer.

6.
Nanoscale ; 12(3): 1397-1405, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31912852

RESUMO

In an effort to scale-up nanomaterial growth over large surface areas, we aim to effectively study the structural non-homogeneities within the arrays of zinc oxide nanowires (ZnO-NWs). The assessment of the lateral gradient of the nanowires' characteristics is presented including their height and surface density. To this end, spectroscopic ellipsometry and the rather recently reported technique of spectral domain attenuated reflectometry are used as two fast, simple and non-invasive characterization methods with further capabilities of scanning over the sample surface. Simple models are proposed by considering ZnO-NWs as the equivalent of thin stratified layers based on the effective medium approach. The methodology not only reveals the presence of gradients, but also enables quantitative analysis for all the samples grown using the hydrothermal method with different growth times ranging from 0.5 h up to 4 h. The gradients are confirmed using scanning electron microscopy (SEM) observations taken as a reference. The results also suggest that the sample orientation during the growth influences the NW growth besides the other parameters already known to affect the growth mechanisms.

7.
Nano Lett ; 19(4): 2509-2515, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30920842

RESUMO

We propose spectral domain attenuated reflectometry (SDAR) for fast characterization of nanomaterial growth. The method is demonstrated here for zinc oxide (ZnO) nanowires (NWs) which are grown vertically in random forest fashion showing that it is not limited to well-ordered NWs. We show how SDAR can provide, on the basis of a single measured spectrum, simultaneous information on nanowire length, nanowire density (through nanowire/air filling ratio), and crystalline quality (through band gap). The robustness of the proposed method is assessed first through comparison with information obtained from SEM and XRD taken as reference. In SDAR, the process for fast extraction of NW thickness and filling ratio values  makes use of the interference pattern contrast and the spectral periodicity in the reflection response which involve a best fit of the measured spectra with simple theoretical modeling based on the effective medium approach, achieved with a mean square error down to 0.1%. The results also suggest the existence of either 2 or 3 layers of different effective refractive index, hence providing insight on possible growth mechanisms.

8.
Sensors (Basel) ; 19(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813389

RESUMO

A novel optofluidic sensor that measures the local pressure of the fluid inside a microfluidic channel is presented. It can be integrated directly on-channel and requires no additional layers in fabrication. The detection can be accomplished at a single wavelength; and thereby, only a single laser diode and a single photodetector are required. This renders the sensor to be compact, cheap and easy to fabricate. Basically, the sensor consisted of a Fabry⁻Pérot microresonator enclosing the fluidic channel. A novel structure of the Fabry⁻Pérot was employed to achieve high-quality factor, that was essential to facilitate the single wavelength detection. The enhanced performance was attributed to the curved mirrors and cylindrical lenses used to avoid light diffraction loss. The presented sensor was fabricated and tested with deionized water liquid and shown to exhibit a sensitivity up to 12.46 dBm/bar, and a detection limit of 8.2 mbar. Numerical simulations are also presented to evaluate the mechanical⁻fluidic performance of the device.

9.
Micromachines (Basel) ; 9(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30393330

RESUMO

This work reports a novel structure for a Fabry⁻Pérot micro cavity that combines the highest reported quality factor for an on-chip Fabry⁻Pérot resonator that exceeds 9800, and a very high sensitivity for an on-chip volume refractometer based on a Fabry⁻Pérot cavity that is about 1000 nm/refractive index unit (RIU). The structure consists of two cylindrical Bragg micromirrors that achieve confinement of the Gaussian beam in the plan parallel to the chip substrate, while for the perpendicular plan, external fiber rod lenses (FRLs) are placed in the optical path of the input and the output of the cavity. This novel structure overcomes number of the drawbacks presented in previous designs. The analyte is passed between the mirrors, enabling its detection from the resonance peak wavelengths of the transmission spectra. Mixtures of ethanol and deionized (DI)-water with different ratios are used as analytes with different refractive indices to exploit the device as a micro-opto-fluidic refractometer. The design criteria are detailed and the modeling is based on Gaussian-optics equations, which depicts a scenario closer to reality than the usually used ray-optics modeling.

10.
Appl Opt ; 57(18): 5112-5120, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117973

RESUMO

In-plane Fabry-Perot cavities based on deeply etched Bragg mirrors are used in many microphotonic applications including sensing, telecom, and swept laser devices. A main limitation to their performance is the small free spectral range (FSR) and low finesse. The FSR limits the dynamic range or the wavelength tuning range, while the linewidth limits the resolution. In this work, we propose coupled Fabry-Perot micro-cavities that greatly enhance the FSR, besides reducing the linewidth, which lead to higher finesse and better performance. The proposed structure is modeled and etched on Si substrate to a depth of 150 µm using the deep reactive ion etching technology. Optical measurements indicate an enhanced FSR of more than 140 nm and a quality factor of 3152 using coupled cavities as compared to only 9 nm FSR for a single cavity of the same length. The over-etching and surface roughness, being the main effective fabrication tolerances, are modeled and extracted from the measurements.

11.
Opt Express ; 26(10): 13443-13460, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801370

RESUMO

In this work, black silicon (BSi) structures including nanocones and nanowires are modeled using effective medium theory (EMT), where each structure is assumed to be a multilayer structure of varying effective index, and its optical scattering in the infrared range is studied in terms of its total reflectance, transmittance and absorptance using the transfer matrix method (TMM). The different mechanisms of the intrinsic absorption of silicon are taken into account, which translates into proper modeling of its complex refraction index, depending on several parameters including the doping level. The model validity is studied by comparing the results with the rigorous coupled wave analysis and is found to be in good agreement. The effect of the aspect ratio, the spacing between the structure features and the structure disordered nature are all considered. Moreover, the results of the proposed model are compared with reflectance measurements of a fabricated BSi sample, in addition to other measurements reported in the literature for Silicon Nanowires (SiNWs). The TMM along with EMT proves to be a convenient method for modeling BSi due to its simple implementation and computational speed.

12.
Microsyst Nanoeng ; 4: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057916

RESUMO

A MEMS electrostatic kinetic energy harvester (e-KEH) of about 1 cm2, working at ultralow frequency (1-20 Hz), without any supported additional mass on its mobile electrode, and working even without a vacuum environment is reported. The prototype is especially suitable for environments with abundant low frequency motions such as wearable electronics. The proposed e-KEH consists of a capacitor with a finger-teeth interdigited comb structure. This greatly reduces the air damping effect, and thus the capacitance variation remains important regardless of the presence of air. With the new design, the energy transduced per cycle of excitation is no less than 33 times higher than the classic design within 10-40 Hz/2 g peak, while is 85 times higher at 15 Hz/2 g peak. An enclosed miniature ball combined with non-linear stoppers enables the oscillation of the movable electrode through impact-based frequency up-conversion mechanism, which is also improved by the low air damping. Thanks to this new design, a higher efficiency than the classic gap-closing comb structure is obtained, as a larger range of working frequency (1-180 Hz) in air. A maximum energy conversion of 450 nJ/cycle is obtained with a bias voltage of 45 V and an acceleration of 11 Hz, 3 g peak. Working with a diode AC-DC rectifier, the proposed KEH is able to support up to 3 RFID communications within 16 s while operated at 11 Hz, 3 g peak.

13.
Micromachines (Basel) ; 7(4)2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30407435

RESUMO

In the scope of miniaturized optical sensors for liquid refractometry, this work details the design, numerical simulation, and experimental characterization of a Fabry-Pérot resonator consisting of two deeply-etched silicon cylindrical mirrors with a micro-tube in between holding the liquid analyte under study. The curved surfaces of the tube and the cylindrical mirrors provide three-dimensional light confinement and enable achieving stability for the cavity illuminated by a Gaussian beam input. The resonant optofluidic cavity attains a high-quality factor (Q)-over 2800-which is necessary for a sensitive refractometer, not only by providing a sharp interference spectrum peak that enables accurate tracing of the peak wavelengths shifts, but also by providing steep side peaks, which enables detection of refractive index changes by power level variations when operating at a fixed wavelength. The latter method can achieve refractometry without the need for spectroscopy tools, provided certain criteria explained in the details are met. By experimentally measuring mixtures of acetone-toluene with different ratios, refractive index variations of 0.0005 < Δn < 0.0022 could be detected, with sensitivity as high as 5500 µW/RIU.

14.
Lab Chip ; 14(13): 2259-65, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24816268

RESUMO

In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.

15.
Lab Chip ; 13(14): 2682-5, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23649405

RESUMO

We present a novel optical technique for simultaneously measuring the absorbance and the refractive index of a thin film using an infrared optofluidic probe. Experiments were carried on two different liquids and the results agree with the bibliographical data. The ultimate goal is to achieve a multi-functional micro-optical device for analytical applications.

16.
Opt Express ; 21(2): 2378-92, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389218

RESUMO

We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q ~1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations.


Assuntos
Desenho Assistido por Computador , Interferometria/instrumentação , Lentes , Modelos Teóricos , Refratometria/instrumentação , Silício/química , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
17.
Nanoscale Res Lett ; 6(1): 288, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21711805

RESUMO

: We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS: 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...